Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.997
Filtrar
1.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
2.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642182

RESUMO

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Assuntos
Brassica napus , Plântula , Plântula/genética , Sementes/genética , Cotilédone/genética , Lipídeos , Aminoácidos/metabolismo , Brassica napus/metabolismo
3.
Sci Data ; 11(1): 356, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589398

RESUMO

Rapeseed is a critical cash crop globally, and understanding its distribution can assist in refined agricultural management, ensuring a sustainable vegetable oil supply, and informing government decisions. China is the leading consumer and third-largest producer of rapeseed. However, there is a lack of widely available, long-term, and large-scale remotely sensed maps on rapeseed cultivation in China. Here this study utilizes multi-source data such as satellite images, GLDAS environmental variables, land cover maps, and terrain data to create the China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 (CARM30). Our product was validated using independent samples and showed average F1 scores of 0.869 and 0.971 for winter and spring rapeseed. The CARM30 has high spatial consistency with existing 10 m and 20 m rapeseed maps. Additionally, the CARM30-derived rapeseed planted area was significantly correlated with agricultural statistics (R2 = 0.65-0.86; p < 0.001). The obtained rapeseed distribution information can serve as a reference for stakeholders such as farmers, scientific communities, and decision-makers.


Assuntos
Brassica napus , Agricultura , China
4.
Pestic Biochem Physiol ; 200: 105785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582570

RESUMO

This study investigates the effects of chlorantraniliprole (CAP) pesticide stress on oilseed rape through comprehensive pot experiments. Assessing CAP residue variations in soil and oilseed rape (Brassia campestris L.), enzyme activities (POD, CPR, GST), and differential metabolites, we unveil significant findings. The average CAP residue levels were 18.38-13.70 mg/kg in unplanted soil, 9.94-6.30 mg/kg in planted soil, and 0-4.18 mg/kg in oilseed rape samples, respectively. Soil microbial influences and systemic pesticide translocation into oilseed rape contribute to CAP residue variations. Under the influence of CAP stress, oilseed rape displays escalated enzyme activities (POD, CPR, GST) and manifests 57 differential metabolites. Among these, 32 demonstrate considerable downregulation, mainly impacting amino acids and phenolic compounds, while 25 exhibit noteworthy overexpression, primarily affecting flavonoid compounds. This impact extends to 24 metabolic pathways, notably influencing amide biosynthesis, as well as arginine and proline metabolism. These findings underscore the discernible effects of CAP pesticide stress on oilseed rape.


Assuntos
Brassica napus , Praguicidas , ortoaminobenzoatos , Praguicidas/metabolismo , Brassica napus/metabolismo , Solo
5.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612746

RESUMO

Signal peptide peptidase (SPP) and its homologs, signal peptide peptidase-like (SPPL) proteases, are members of the GxGD-type aspartyl protease family, which is widespread in plants and animals and is a class of transmembrane proteins with significant biological functions. SPP/SPPLs have been identified; however, the functions of SPP/SPPL in rapeseed (Brassica napus L.) have not been reported. In this study, 26 SPP/SPPLs were identified in rapeseed and categorized into three groups: SPP, SPPL2, and SPPL3. These members mainly contained the Peptidase_A22 and PA domains, which were distributed on 17 out of 19 chromosomes. Evolutionary analyses indicated that BnaSPP/SPPLs evolved with a large number of whole-genome duplication (WGD) events and strong purifying selection. Members are widely expressed and play a key role in the growth and development of rapeseed. The regulation of rapeseed pollen fertility by the BnaSPPL4 gene was further validated through experiments based on bioinformatics analysis, concluding that BnaSPPL4 silencing causes male sterility. Cytological observation showed that male infertility caused by loss of BnaSPPL4 gene function occurs late in the mononucleate stage due to microspore dysplasia.


Assuntos
Brassica napus , Brassica rapa , Infertilidade Masculina , Animais , Humanos , Masculino , Brassica napus/genética , Ácido Aspártico Endopeptidases , Fertilidade/genética , Peptídeo Hidrolases
6.
Planta ; 259(5): 122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619628

RESUMO

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Assuntos
Arabidopsis , Brassica napus , Fosfatos Açúcares , Trealose , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrogênio , Trealose/análogos & derivados , Técnicas do Sistema de Duplo-Híbrido
7.
BMC Plant Biol ; 24(1): 206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509484

RESUMO

BACKGROUND: Plants mediate several defense mechanisms to withstand abiotic stresses. Several gene families respond to stress as well as multiple transcription factors to minimize abiotic stresses without minimizing their effects on performance potential. RNA helicase (RH) is one of the foremost critical gene families that can play an influential role in tolerating abiotic stresses in plants. However, little knowledge is present about this protein family in rapeseed (canola). Here, we performed a comprehensive survey analysis of the RH protein family in rapeseed (Brassica napus L.). RESULTS: A total of 133 BnRHs genes have been discovered in this study. By phylogenetic analysis, RHs genes were divided into one main group and a subgroup. Examination of the chromosomal position of the identified genes showed that most of the genes (27%) were located on chromosome 3. All 133 identified sequences contained the main DEXDC domain, the HELICC domain, and a number of sub-domains. The results of biological process studies showed that about 17% of the proteins acted as RHs, 22% as ATP binding, and 14% as mRNA binding. Each part of the conserved motifs, communication network, and three-dimensional structure of the proteins were examined separately. The results showed that the RWC in leaf tissue decreased with higher levels of drought stress and in both root and leaf tissues sodium concentration was increased upon increased levels of salt stress treatments. The proline content were found to be increased in leaf and root with the increased level of stress treatment. Finally, the expression patterns of eight selected RHs genes that have been exposed to drought, salinity, cold, heat and cadmium stresses were investigated by qPCR. The results showed the effect of genes under stress. Examination of gene expression in the Hayola #4815 cultivar showed that all primers except primer #79 had less expression in both leaves and roots than the control level. CONCLUSIONS: New finding from the study have been presented new insights for better understanding the function and possible mechanism of RH in response to abiotic stress in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Filogenia , Brassica rapa/genética , Estresse Fisiológico/genética , RNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Physiol Plant ; 176(2): e14247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499953

RESUMO

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Assuntos
Brassica napus , Fósforo , Brassica napus/genética , Fosfatase Ácida/genética , Fenótipo , Genótipo , Solo
9.
Theor Appl Genet ; 137(3): 65, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430276

RESUMO

KEY MESSAGE: Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.


Assuntos
Brassica napus , Resistência à Doença , Resistência à Doença/genética , Brassica napus/genética , Brassica napus/microbiologia , Melhoramento Vegetal
10.
Biomolecules ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540690

RESUMO

This study explores the impact of rotational frying of three different food products on degradation of sterols, as well as their migration between frying oils and food. The research addresses a gap in the existing literature, which primarily focuses on changes in fat during the frying of single food items, providing limited information on the interaction of sterols from the frying medium with those from the food product. The frying was conducted at 185 ± 5 °C for up to 10 days where French fries, battered chicken, and fish sticks were fried in succession. The sterol content was determined by Gas Chromatography. This research is the first to highlight the influence of the type of oil on sterol degradation in both oils and food. Notably, sterols were found to be most stable when food products were fried in high-oleic low-linolenic rapeseed oil (HOLLRO). High-oleic soybean oil (HOSO) exhibited higher sterol degradation than high-oleic rapeseed oil (HORO). It was proven that cholesterol from fried chicken and fish sticks did not transfer to the fried oils or French fries. Despite initially having the highest sterol content in fish, the lowest sterol amount was recorded in fried fish, suggesting rapid degradation, possibly due to prefrying in oil with a high sterol content, regardless of the medium used.


Assuntos
Brassica napus , Fitosteróis , Animais , Óleo de Soja , Óleo de Brassica napus , Esteróis , Culinária/métodos , Óleos
11.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542283

RESUMO

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Assuntos
Brassica napus , Brassica rapa , Ácidos Erúcicos , Germinação/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Secas , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica
12.
Food Chem ; 446: 138858, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430766

RESUMO

The functionality of rapeseed meal is limited, to acquire more utilization, the functional attributes were improved by altering its structural features using magnetic field-assisted solid fermentation. The magnetic treatment was performed every 24 h (specifically at 24, and 48 h), each treatment having a duration of 4 h. The magnetic intensity was set at 120 Gs, and the fermentation temperature 37 °C. Magnetic field-assisted solid fermentation resulted in higher surface hydrophobicity, fluorescence intensity, UV absorption, and sulfhydryl groups of rapeseed meal. Magnetic field treatment considerably enhanced solubility, antioxidant activity, emulsifying activity, and stability by 8.8, 19.5, 20.7, and 12.3 %, respectively. Magnetic field-assisted solid fermentation also altered rapeseed meal structure, as shown by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy outcomes. Correlation analysis displayed positive interrelationships between functional characteristics, and surface hydrophobicity, ß-sheets, and polydispersity index.


Assuntos
Brassica napus , Brassica rapa , Brassica rapa/química , Fenômenos Químicos , Fermentação , Solubilidade
13.
Funct Plant Biol ; 512024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467163

RESUMO

Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Metanol/farmacologia , Secas , NADP/farmacologia , Brassica rapa/genética , Fotossíntese
14.
Plant Cell Rep ; 43(4): 86, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453734

RESUMO

KEY MESSAGE: The BrrFT paralogues exhibit distinct expression patterns and play different roles in regulating flowering time, and BrrFT4 competes with BrrFT1 and BrrFT2 to interact with BrrFD proteins. Flowering time is an important agricultural trait for Brassica crops, and early bolting strongly affects the yield and quality of Brassica rapa ssp. rapa. Flowering Locus T paralogues play an important role in regulating flowering time. In this study, we identified FT-related genes in turnip by phylogenetic classification, and four BrrFT homoeologs that shared with high identities with BraFT genes were isolated. The different gene structures, promoter binding sites, and expression patterns observed indicated that these genes may play different roles in flowering time regulation. Further genetic and biochemical experiments showed that as for FT-like paralogues, BrrFT2 acted as the key floral inducer, and BrrFT1 seems to act as a mild 'florigen' protein. However, BrrFT4 acts as a floral repressor and antagonistically regulates flowering time by competing with BrrFT1 and BrrFT2 to bind BrrFD proteins. BrrFT3 may have experienced loss of function via base shift mutation. Our results revealed the potential roles of FT-related genes in flowering time regulation in turnip.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Brassica rapa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/genética
16.
Pest Manag Sci ; 80(5): 2480-2494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436531

RESUMO

BACKGROUND: Multiple and simultaneous attacks by pathogens and insect pests frequently occur in nature. Plants respond to biotic stresses by activating distinct defense mechanisms, but little is known about how plants cope with multiple stresses. The focus of this study was the combined interaction of fungal infection caused by Leptosphaeria maculans (synonym Plenodomus lingam) and arthropod infestation by the diamondback moth (Plutella xylostella) in oilseed rape (Brassica napus). We hypothesized that infection by the fungal pathogen L. maculans could alter oilseed rape palatability to P. xylostella-chewing caterpillars. Feeding preference tests were complemented with analyses of defense gene transcription, and levels of glucosinolates (GLSs) and volatile organic compounds (VOCs) in L. maculans-inoculated and non-inoculated (control) leaves to determine possible causes of larval choice. RESULTS: Caterpillars preferred true leaves to cotyledons, hence true leaves were used for further experiments. True leaves inoculated with L. maculans were more palatable to caterpillars over control leaves during the early stage of infection at 3 days post inoculation (dpi), but this preference disappeared in the later stages of infection at 7 dpi. In parallel, genes involved in the salicylic acid and ethylene pathways were up-regulated in L. maculans-inoculated leaves at 3 and 7 dpi; L. maculans increased the level of total aliphatic GLSs, specifically glucobrassicanapin, and decreased the level of glucoiberin at 3 dpi and altered the content of specific VOCs. A group of 55 VOCs with the highest variability between treatments was identified. CONCLUSION: We suggest that the P. xylostella preference for L. maculans-inoculated leaves in the early stage of disease development could be caused by the underlying mechanisms leading to changes in metabolic composition. Further research should pinpoint the compounds responsible for driving larval preference and evaluate whether the behavior of the adult moths, i.e. the stage that makes the first choice regarding host plant selection in field conditions, correlates with our results on larval host acceptance. © 2024 Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Mariposas , Micoses , Animais , Ascomicetos/genética , Folhas de Planta/microbiologia , Larva , Doenças das Plantas/microbiologia
17.
Plant Commun ; 5(4): 100884, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494786

RESUMO

Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.


Assuntos
Brassica napus , Brassica napus/genética , Locos de Características Quantitativas , Embaralhamento de DNA , Melhoramento Vegetal , Genômica
18.
Planta ; 259(5): 95, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512412

RESUMO

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Assuntos
Brassica napus , Brassica rapa , Melhoramento Vegetal , Plântula/fisiologia , Fenótipo , Genótipo
19.
Food Res Int ; 181: 114111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448110

RESUMO

Alternative plant protein sources offer excellent solutions for tackling the current challenge of food insecurity and sustainability. Inspired by soy tofu, pressed gels represent a robust and versatile way to create protein-enriched plant products. Here, production of heat-induced pressed gels from canola cold-pressed cakes (CPC) and hot-pressed cakes (HPC) was investigated under varied stirring conditions. Pressed gels prepared from CPC resulted in a greater yield and protein recovery than that of HPC. While using carbohydrases as a pretreatment was ineffective in improving yield and protein recovery, applying a stirring condition during heating increased the protein recovery up to 38.3%. Also, stirring condition was proved to be able to modulate the textural properties by controlling the compactness and the size of aggregates. It is revealed that pressed gels are stabilized through a combination of hydrogen bonds, hydrophobic interactions, and disulfide bonds. In comparison to canola press cake, the pressed gels contained less glucosinolates and phenolic compounds, but more phytic acid. A mechanism of formation has been hypothesized based on the nucleation-growth mechanism, and a shift was proposed from diffusion-limited processes in non-stirred pressed gels to reaction-limited process in stirred pressed gels. In conclusion, the potential of canola heat-induced pressed gels was demonstrated both as a stand-alone product and a micro-structured protein extract.


Assuntos
Brassica napus , Temperatura Alta , Glicosídeo Hidrolases , Géis
20.
Plant Physiol Biochem ; 208: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490152

RESUMO

Boron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well. Here, we report that B transporter BnaA4.BOR2 is involved in the transport of B from root to shoot and its distribution in shoot cell wall and flower in rapeseed. The results of GUS staining and in-situ PCR analysis showed that BnaA4.BOR2 is mainly expressed in cortex and endodermis of root tip meristem zone and endodermis of mature zone. BnaA4.BOR2 was mainly localized in plasma membrane and showed B transport activity in yeast. Overexpression of Bna4.BOR2 could rescue the phenotype of Arabidopsis mutant bor2-2 under low-B condition. Furthermore, knockout of BnaA4.BOR2 could significantly enhance the sensitivity of rapeseed mutants to B deficiency, including inhibition of root elongation and biomass decrease of roots and shoots. The B concentration in xylem sap of BnaA4.BOR2 mutants was significantly decreased under B deficiency, which resulted in significantly lower B concentrations in shoot cell wall at seedling stage and flower organ at reproductive stage compared to that of wild-type QY10. The growth of BnaA4.BOR2 mutants were severely inhibited, exhibiting a typical B-deficient phenotype of "flowering without seed setting", leading to a sharp decrease in seed yield in B deficient soil. Taken together, these results indicate that BnaA4.BOR2 is critical for rapeseed growth and seed yield production under low B level, which is mainly expressed in cortex and endodermis, and contributed to the transport of B from roots to shoots and its distribution in shoot.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Brassica napus/metabolismo , Boro/metabolismo , Brassica rapa/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...